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Motivation



Background
Health Care Delivery in the United States

▶ Relative to comparable countries, the United States spends far more on health care,
nearly 18% of its GDP in 2016.

▶ Yet it has little to show for that spending, ranking near the bottom of Western,
industrialized nations on many critical health outcomes.

▶ While the problems are complex, many suggest that the fragmented nature of care
delivery contributes significantly to the health care system’s poor performance.

▶ Care fragmentation occurs when the delivery of services to patients is spread across
multiple, disconnected providers.

▶ In settings with greater care fragmentation, communication and coordination among care
team members is more difficult.

▶ Consequently, care fragmentation leads to higher spending and lower quality.



Our approach

▶ In this study, we leverage recent advances in topological data analysis and the growing
availability of “big data” on health care delivery to study care fragmentation at scale.

▶ Specifically, using claims data from Medicare, we map care delivery networks across
regions (2014-2017), wherein edges track patient flows among local physicians.

▶ Subsequently, we use Hodge theory to decompose the observed patient flows into their
local cyclic (curl), global cyclic (harmonic), and acyclic (gradient) components.

▶ We then examine associations between these three different flow patterns and measures
of local care quality and spending.



Data



Data

▶ Our primary data are derived from Medicare claims.

▶ Bills (or claims) submitted to Medicare for reimbursement include detailed information
about the billing providers and dates and locations of service.

▶ These data are exceptionally rich, allowing us to map hundreds of millions of
provider-provider relationships across all 50 states, from 2014 to 2017.

▶ We also collected information on local care quality and spending from the Dartmouth
Institute for Health Policy and Clinical Practice.

▶ In addition, basic data on providers (e.g., practice locations) were obtained from the
National Plan and Provider Enumeration System (NPPES).



Methods



Mapping care delivery networks

▶ The referral data are formatted as edge lists, one for each year of observation.

▶ Nodes correspond to providers (indicated by NPIs).

▶ Edges are recorded between pairs of providers when they bill for the same patients within
a defined time window, and are weighted by the number of shared patients.

▶ For example, if NPI A saw 30 patients in one week, and 12 of those subsequently saw NPI B in
the next week, we would record an edge between A and B with a weight of 12.

▶ There is a directionality to the edges, implied by the timing of patient visits, which
motivates our view of these networks as tracking patient flows.

▶ Because health care delivery tends to be highly localized, we map care delivery networks
within regions (Hospital Service Areas).

▶ For each observation year × HSA, we identify all local providers, based on practice
addresses, and then map their relationships using the referral data.



Combinatorial Hodge theory

▶ Let G = (V, E) be a graph with n0 = |V| nodes and n1 = |E| edges.
▶ We define the clique complex K(G) of G by “filling in” all k-cliques, treated as

(k − 1)-dimensional simplices.

▶ For each dimension k, define the space of k-chains Ck as a finite-dimensional Hilbert
space with coefficients in R.



Combinatorial Hodge theory

▶ Ck has a dual space of k-dimensional co-chains Ck composed of alternating functions
f : Ck → R.

▶ C1 may be interpreted as the space of edge flows on G .

▶ A flow f ∈ Rn1 is an assignment of a real number each edge, negative values indicating
flow in direction opposite to orientation.

▶ The boundary operator takes k-chains to (k − 1)-chains Bk : Ck → Ck−1.

▶ Dually, the coboundary map follows as B⊤
k : Ck → Ck+1.
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The Hodge Laplacian

▶ The Hodge Laplacian is given by

Lk = B⊤
k Bk + Bk+1B⊤

k+1

▶ Of particular interest for our application is the Hodge 1-Laplacian:

L1 = B⊤
1 B1 + B2B⊤

2

▶ The Hodge Laplacian generalizes the standard graph Laplacian: L0 = B1B⊤
1 .



Hodge decomposition

▶ im(Bk ) defines the space of (k − 1) boundaries and ker(Bk ) the space of k-cycles.

▶ The vector space Hk = ker(Bk )/ im(Bk+1) has rank equal to the number of
k-dimensional holes in K(G).

▶ Functions h ∈ ker(Lk ) are called harmonic, in reference to their status as solutions to
the (discrete) Laplace equation Lkh = 0.

▶ The harmonic functions are representatives of elements in Hk .

▶ h ∈ ker(Lk ) requires that h ∈ ker(Bk ) and h ∈ ker(Bk+1), therefore we may decompose
Ck as:

Ck = im(Bk+1)⊕ im(B⊤
k )⊕ ker(Lk )

▶ On the space of edge flows C1 this becomes

C1 ∼= C1 = im(B2)⊕ im(B⊤
1 )⊕ ker(L1)
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Hodge decomposition

▶ On the space of edge flows C1 this becomes

C1 ∼= C1 = im(B2)⊕ im(B⊤
1 )⊕ ker(L1)

▶ im(B2) is the curl subspace consisting of weighted flows r ∈ im(B2) which may be
composed of local circulations along any 2-simplex (3-clique).

▶ im(B⊤
1 ) is a weighted cut space of edges which disconnect the network or, equivalently,

gradient flows g ∈ im(B⊤
1 ) which contain no cyclic component.

▶ Harmonic elements h ∈ ker(L1) are weighted global circulations that do not sum to zero
around cycles but are inexpressible as linear combinations of curl flow around 2-simplices.



Random walk normalization

▶ Note: for our analyses, we compute a normalized form of L1 and the resulting
decomposition known as the Random-walk normalization.

▶ This normalization mimics the random walk normalization of the graph Laplacian in
higher dimensions by approximating the steady-state transition matrix of a random
walker on K(G).

▶ We will not go into specifics here, but see the paper for more details.

For more information see Schaub et al. (2020).



Harmonic Clustering
▶ The harmonic functions of L1 encode topological features of K(G), and by extension, G .

▶ Let L1 = UΛU⊤ and collect the eigenvectors (harmonic functions) corresponding to the
fist d 0-eigenvalues H = (h1, h2 . . . hd ).

▶ We can then cluster H using any standard clustering method, though subspace
clustering.

For more information see Ebli and Spreemann (2019).



Network-level measures

▶ We define network-level
measures of flow, computed for
each region i and year t:

▶ gradient flow per edge
ḡit =

1
n1
|
∑n1

e ge |

▶ harmonic flow per edge
h̄it =

1
n1
|
∑n1

e he |

▶ curl flow per edge
r̄it =

1
n1
|
∑n1

e re |



Results



Harmonic clustering of care delivery networks

Care delivery networks depicted for Minnesota (a), Washington (b), Minneapolis
(c), and Seattle (d) as of 2017.



Distribution of patient flows by subspace and region

𝑟

ℎ
𝑔

▶ Harmonic flow per edge is the lowest in all regions, which seems reasonable, as global cyclic flow is
likely harder to form.

▶ Curl flow per edge assumes larger values, which also seems plausible, as the formation of local cycles
is probably natural in a care delivery network, where team coordination is important.



Regression models

▶ Up to this point, our results have shown that there is substantial variability in the
composition of patient flows across regions.

▶ We also considered whether this variation is correlated with spending and quality.

▶ To do so, we estimate a series of linear regression models.

▶ The unit of observation is the region × year.

▶ Each model includes three independent variables, which correspond to sums across flow
values assigned to each edge, separately for each subspace (adjusted by network size).

▶ To adjust for temporal trends, each model includes year fixed effects.

▶ We also estimate models that control for socioeconomic conditions, which have been
shown to be predictive of regional health care cost and quality.



(1) (2) (3) (4) (5)
DV: Total

spending per

beneficiary

DV: Inpatient

spending per

beneficiary

DV: Outpatient

spending per

beneficiary

DV: Readmission
rate post-surgical

treatment

DV: ER visit
rate post-surgical

treatment

Gradient flow ḡ per edge 60.68 34.89 -288.66*** -0.13 -0.37
(163.44) (98.35) (79.10) (0.87) (0.71)

Harmonic flow h̄ per edge 1147.09*** 1137.64*** 2828.18*** 2.59** 4.42***
(321.92) (201.14) (160.58) (1.31) (1.11)

Curl flow r̄ per edge -1702.83*** -1416.81*** -2712.92*** -2.80*** -3.64***
(216.07) (135.18) (105.29) (0.52) (0.51)

Constant 10361.97*** 4726.87*** 2557.93*** 11.54*** 16.90***
(57.38) (37.14) (29.81) (0.16) (0.16)

Year fixed effects Yes Yes Yes Yes Yes

N 12952 12952 12952 6034 7776
r2 0.08 0.05 0.22 0.01 0.03

Robust standard errors (clustered on region) are shown in parentheses; *p<0.1; **p<0.05; ***p<0.01

▶ Harmonic h̄ and curl r̄ flow are associated with spending, but in opposite directions.

▶ When harmonic flow is greater, spending is higher; when curl flow is greater, it’s lower.

▶ For perspective, a 1 SD increase in curl flow is associated with a decrease of $354.75 in annual
spending per beneficiary; for an average region, the savings works out to almost $3 million/year.

▶ Turning to quality, we find that greater curl r̄ flow is associated with better outcomes, but again, the
opposite holds for harmonic flow.

▶ Our models are robust to controls for socioeconomic factors, and are comparable in effect sizes.

▶ A 1 SD decrease in the population without a high school degree is associated with a $465.76 drop in
spending/beneficiary, on par with the savings associated with a similar decrease in harmonic flow.



(1) (2) (3) (4) (5)
DV: Total

spending per

beneficiary

DV: Inpatient

spending per

beneficiary

DV: Outpatient

spending per

beneficiary

DV: Readmission
rate post-surgical

treatment

DV: ER visit
rate post-surgical

treatment

Gradient flow ḡ per edge -196.34 -127.45 -184.56** 0.43 -0.09
(153.25) (93.77) (74.60) (0.80) (0.66)

Harmonic flow h̄ per edge 557.08* 871.46*** 2748.45*** 0.67 2.42**
(329.08) (204.19) (158.85) (1.27) (1.10)

Curl flow r̄ per edge -862.23*** -1004.39*** -2665.44*** -1.51** -1.82***
(238.69) (146.99) (111.30) (0.60) (0.59)

Median household income ($) -0.00 0.00 -0.00 0.00 -0.00***
(0.00) (0.00) (0.00) (0.00) (0.00)

Unemployment rate (%) 7.53 2.98 -50.70*** 0.08*** 0.12***
(9.86) (5.89) (4.22) (0.02) (0.02)

No high school degree (%) 71.01*** 44.43*** -8.68*** 0.05*** 0.03***
(5.19) (3.00) (1.53) (0.01) (0.01)

Hispanic population (%) -2.54*** -1.25*** -0.98*** -0.00*** -0.00
(0.68) (0.37) (0.21) (0.00) (0.00)

Black population (%) 4.61*** 2.37*** 0.66*** 0.01*** -0.00
(0.97) (0.50) (0.22) (0.00) (0.00)

Constant 9227.76*** 4033.15*** 3007.61*** 9.94*** 15.35***
(94.76) (60.42) (43.81) (0.21) (0.23)

Year fixed effects Yes Yes Yes Yes Yes

N 12950 12950 12950 6034 7776
R2 0.18 0.16 0.29 0.07 0.06

Wald tests for flow predictors
F 11.08 19.79 208.88 3.82 4.14
d.f. 3.00 3.00 3.00 3.00 3.00
p-value 0.00 0.00 0.00 0.01 0.01



Wrapping up



Wrapping up

▶ Care fragmentation is a critical problem facing health care delivery in the United States.

▶ Recently, the growing availability of “big data” has enabled unprecedented insight into
care delivery, creating opportunities to better understand and address fragmentation.

▶ We utilized a novel framework from topological data analysis—the discrete Hodge
decomposition—to study flows of patients among physicians in care delivery networks.

▶ We found substantial variation across broad regions of the country, perhaps
corresponding to institutional differences in care delivery.

▶ Moreover, we observed that greater curl flow is associated with better performance (i.e.,
lower cost, higher quality), but the opposite holds for harmonic flow.

▶ Given our context, these patterns seem plausible.

▶ The movement of patients around global cycles seems problematic from a care coordination
perspective, potentially leading to higher cost, lower quality care.

▶ By contrast, the movement of patients around local cycles (as indicated by greater curl flow)
seems more conductive to close coordination among providers.

▶ While preliminary, our findings highlight the significant potential of emerging methods in
topological data analysis for the study of health care delivery.


