Go with the Flow? A Large-Scale Analysis of Health Care Delivery Networks in the United States Using Hodge Theory

Thomas Gebhart<sup>1</sup> Xiaojun Fu<sup>2</sup> Russell J. Funk<sup>3</sup>

<sup>1</sup>Computer Science and Engineering, University of Minnesota

<sup>2</sup>School of Physics and Astronomy, University of Minnesota

<sup>3</sup>Carlson School of Management, University of Minnesota

# **Motivation**

## Background

Health Care Delivery in the United States

- Relative to comparable countries, the United States spends far more on health care, nearly 18% of its GDP in 2016.
- Yet it has little to show for that spending, ranking near the bottom of Western, industrialized nations on many critical health outcomes.
- While the problems are complex, many suggest that the fragmented nature of care delivery contributes significantly to the health care system's poor performance.
- Care fragmentation occurs when the delivery of services to patients is spread across multiple, disconnected providers.
- In settings with greater care fragmentation, communication and coordination among care team members is more difficult.
- Consequently, care fragmentation leads to higher spending and lower quality.

#### Our approach

- In this study, we leverage recent advances in topological data analysis and the growing availability of "big data" on health care delivery to study care fragmentation at scale.
- Specifically, using claims data from Medicare, we map care delivery networks across regions (2014-2017), wherein edges track patient flows among local physicians.
- Subsequently, we use Hodge theory to decompose the observed patient flows into their local cyclic (curl), global cyclic (harmonic), and acyclic (gradient) components.
- We then examine associations between these three different flow patterns and measures of local care quality and spending.



- Our primary data are derived from Medicare claims.
- Bills (or claims) submitted to Medicare for reimbursement include detailed information about the billing providers and dates and locations of service.
- These data are exceptionally rich, allowing us to map hundreds of millions of provider-provider relationships across all 50 states, from 2014 to 2017.
- We also collected information on local care quality and spending from the Dartmouth Institute for Health Policy and Clinical Practice.
- In addition, basic data on providers (e.g., practice locations) were obtained from the National Plan and Provider Enumeration System (NPPES).

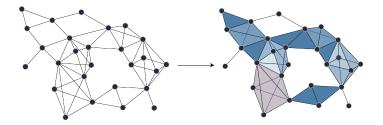
# Methods

### Mapping care delivery networks

- The referral data are formatted as edge lists, one for each year of observation.
- Nodes correspond to providers (indicated by NPIs).
- Edges are recorded between pairs of providers when they bill for the same patients within a defined time window, and are weighted by the number of shared patients.
  - For example, if NPI A saw 30 patients in one week, and 12 of those subsequently saw NPI B in the next week, we would record an edge between A and B with a weight of 12.
- There is a directionality to the edges, implied by the timing of patient visits, which motivates our view of these networks as tracking patient flows.
- Because health care delivery tends to be highly localized, we map care delivery networks within regions (Hospital Service Areas).
- ► For each observation year × HSA, we identify all local providers, based on practice addresses, and then map their relationships using the referral data.

#### Combinatorial Hodge theory

- Let  $G = (\mathcal{V}, \mathcal{E})$  be a graph with  $n_0 = |\mathcal{V}|$  nodes and  $n_1 = |\mathcal{E}|$  edges.
- We define the *clique complex*  $\mathcal{K}(G)$  of G by "filling in" all k-cliques, treated as (k-1)-dimensional simplices.
- For each dimension k, define the space of k-chains  $C_k$  as a finite-dimensional Hilbert space with coefficients in  $\mathbb{R}$ .



### Combinatorial Hodge theory

- $C_k$  has a dual space of k-dimensional co-chains  $C^k$  composed of alternating functions  $f : C_k \to \mathbb{R}$ .
- $C^1$  may be interpreted as the space of edge flows on G.
- ▶ A flow  $f \in \mathbb{R}^{n_1}$  is an assignment of a real number each edge, negative values indicating flow in direction opposite to orientation.

### Combinatorial Hodge theory

- C<sub>k</sub> has a dual space of k-dimensional co-chains  $C^k$  composed of alternating functions  $f : C_k \to \mathbb{R}$ .
- $C^1$  may be interpreted as the space of edge flows on G.
- A flow f ∈ ℝ<sup>n1</sup> is an assignment of a real number each edge, negative values indicating flow in direction opposite to orientation.
- The boundary operator takes k-chains to (k-1)-chains  $B_k : C_k \to C_{k-1}$ .
- ▶ Dually, the coboundary map follows as  $B_k^{\top}$  :  $C_k \rightarrow C_{k+1}$ .

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | (b)    | [A, B] | [A, C] | [B, C] | [B, E] | [C, D] | [D, E] |               | [A, B, C] |
|--------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|---------------|-----------|
|                                                        | A      | -1     | -1     | 0      | 0      | 0      | 0      | [A, B]        | 1         |
|                                                        | В      | 1      | 0      | -1     | -1     | 0      | 0      | [A, C]        | -1        |
|                                                        | B1 = C | 0      | 1      | 1      | 0      | -1     | 0      | $B_2 = [B,C]$ | 1         |
|                                                        | D      | 0      | 0      | 0      | 0      | 1      | -1     | [B, E]        | 0         |
| 10                                                     | E      | 0      | 0      | 0      | 1      | 0      | 1      | [C, D]        | 0         |
| bidirected edge flow                                   |        |        |        |        |        |        |        | [D, E]        | 0         |

#### The Hodge Laplacian

The Hodge Laplacian is given by

$$oldsymbol{\mathcal{L}}_k = oldsymbol{B}_k^ op oldsymbol{\mathcal{B}}_k + oldsymbol{B}_{k+1}oldsymbol{B}_{k+1}^ op$$

• Of particular interest for our application is the *Hodge 1-Laplacian*:

$$\mathcal{L}_1 = \mathbf{B}_1^\top \mathbf{B}_1 + \mathbf{B}_2 \mathbf{B}_2^\top$$

▶ The Hodge Laplacian generalizes the standard graph Laplacian:  $\mathcal{L}_0 = \mathbf{B}_1 \mathbf{B}_1^\top$ .

| (b)  |   | [A, B] | [A, C] | [B, C] | [B, E] | [C, D] | [D, E] |                   | [A, B, C] |                                         |    |    |    |    |    |    |
|------|---|--------|--------|--------|--------|--------|--------|-------------------|-----------|-----------------------------------------|----|----|----|----|----|----|
|      | A | -1     | -1     | 0      | 0      | 0      | 0      | [A, B]            | 1         |                                         | 3  | 0  | 0  | -1 | 0  | 0  |
|      | В | 1      | 0      | -1     | -1     | 0      | 0      | [A, C]            | -1        |                                         | 0  | 3  | 0  | 0  | -1 | 0  |
| B1 = | c | 0      | 1      | 1      | 0      | -1     | 0      | $B_2 \ = \ [B,C]$ | 1         | $\mathcal{L} = B_1^T B_1 + B_2^T B_2 =$ | 0  | 0  | 3  | 1  | -1 | 0  |
|      | D | 0      | 0      | 0      | 0      | 1      | -1     | [B, E]            | 0         |                                         | -1 | 0  | 1  | 2  | 0  | 1  |
|      | E | 0      | 0      | 0      | 1      | 0      | 1      | [C, D]            | 0         |                                         | 0  | -1 | -1 | 0  | 2  | -1 |
|      |   |        |        |        |        |        |        | [D, E]            | 0         |                                         | 0  | 0  | 0  | 1  | -1 | 2  |

- $im(B_k)$  defines the space of (k-1) boundaries and  $ker(B_k)$  the space of k-cycles.
- The vector space H<sub>k</sub> = ker(B<sub>k</sub>)/im(B<sub>k+1</sub>) has rank equal to the number of k-dimensional holes in K(G).
- Functions  $h \in \text{ker}(\mathcal{L}_k)$  are called *harmonic*, in reference to their status as solutions to the (discrete) Laplace equation  $\mathcal{L}_k h = 0$ .
- The harmonic functions are representatives of elements in  $\mathcal{H}_k$ .

- ▶ im( $B_k$ ) defines the space of (k-1) boundaries and ker( $B_k$ ) the space of k-cycles.
- The vector space H<sub>k</sub> = ker(B<sub>k</sub>)/im(B<sub>k+1</sub>) has rank equal to the number of k-dimensional holes in K(G).
- Functions  $h \in \text{ker}(\mathcal{L}_k)$  are called *harmonic*, in reference to their status as solutions to the (discrete) Laplace equation  $\mathcal{L}_k h = 0$ .
- The harmonic functions are representatives of elements in  $\mathcal{H}_k$ .
- ▶  $h \in \ker(\mathcal{L}_k)$  requires that  $h \in \ker(\mathcal{B}_k)$  and  $h \in \ker(\mathcal{B}_{k+1})$ , therefore we may decompose  $C_k$  as:

 $\mathcal{C}_k = \operatorname{\mathsf{im}}(\boldsymbol{B}_{k+1}) \oplus \operatorname{\mathsf{im}}(\boldsymbol{B}_k^{ op}) \oplus \operatorname{\mathsf{ker}}(\boldsymbol{\mathcal{L}}_k)$ 

- ▶ im( $B_k$ ) defines the space of (k-1) boundaries and ker( $B_k$ ) the space of k-cycles.
- The vector space H<sub>k</sub> = ker(B<sub>k</sub>)/im(B<sub>k+1</sub>) has rank equal to the number of k-dimensional holes in K(G).
- Functions  $h \in \text{ker}(\mathcal{L}_k)$  are called *harmonic*, in reference to their status as solutions to the (discrete) Laplace equation  $\mathcal{L}_k h = 0$ .
- The harmonic functions are representatives of elements in  $\mathcal{H}_k$ .
- ▶  $h \in \ker(\mathcal{L}_k)$  requires that  $h \in \ker(\mathcal{B}_k)$  and  $h \in \ker(\mathcal{B}_{k+1})$ , therefore we may decompose  $C_k$  as:

$$\mathcal{C}_k = \operatorname{im}(\boldsymbol{B}_{k+1}) \oplus \operatorname{im}(\boldsymbol{B}_k^{ op}) \oplus \operatorname{ker}(\boldsymbol{\mathcal{L}}_k)$$

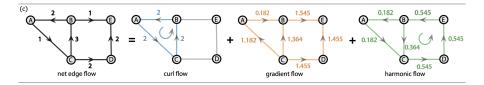
On the space of edge flows C<sup>1</sup> this becomes

$$\mathcal{C}^1 \cong \mathcal{C}_1 = \operatorname{im}(\boldsymbol{B}_2) \oplus \operatorname{im}(\boldsymbol{B}_1^{ op}) \oplus \operatorname{ker}(\boldsymbol{\mathcal{L}}_1)$$

On the space of edge flows C<sup>1</sup> this becomes

$$\mathcal{C}^1 \cong \mathcal{C}_1 = \operatorname{im}(\boldsymbol{B}_2) \oplus \operatorname{im}(\boldsymbol{B}_1^{ op}) \oplus \operatorname{ker}(\boldsymbol{\mathcal{L}}_1)$$

- im(B<sub>2</sub>) is the *curl* subspace consisting of weighted flows r ∈ im(B<sub>2</sub>) which may be composed of local circulations along any 2-simplex (3-clique).
- ▶ im( $B_1^{\top}$ ) is a weighted cut space of edges which disconnect the network or, equivalently, gradient flows  $g \in im(B_1^{\top})$  which contain no cyclic component.
- ► Harmonic elements h ∈ ker(L<sub>1</sub>) are weighted global circulations that do not sum to zero around cycles but are inexpressible as linear combinations of curl flow around 2-simplices.



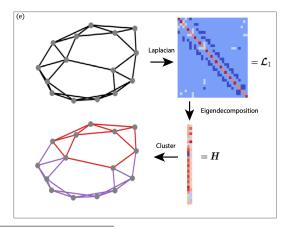
#### Random walk normalization

- Note: for our analyses, we compute a normalized form of L<sub>1</sub> and the resulting decomposition known as the Random-walk normalization.
- This normalization mimics the random walk normalization of the graph Laplacian in higher dimensions by approximating the steady-state transition matrix of a random walker on K(G).
- We will not go into specifics here, but see the paper for more details.

For more information see Schaub et al. (2020).

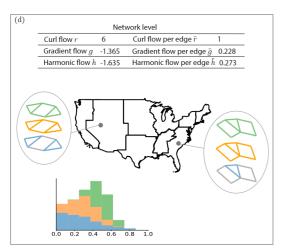
## Harmonic Clustering

- The harmonic functions of  $\mathcal{L}_1$  encode topological features of  $\mathcal{K}(G)$ , and by extension, G.
- ► Let  $\mathcal{L}_1 = U\Lambda U^{\top}$  and collect the eigenvectors (harmonic functions) corresponding to the fist *d* 0-eigenvalues  $H = (h_1, h_2 \dots h_d)$ .
- ▶ We can then cluster *H* using any standard clustering method, though subspace clustering.



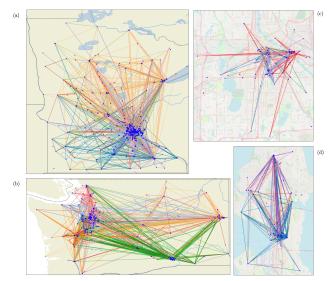
#### Network-level measures

- We define network-level measures of flow, computed for each region *i* and year *t*:
- gradient flow per edge  $\bar{g}_{it} = \frac{1}{n_1} |\sum_e^{n_1} g_e|$
- harmonic flow per edge  $\bar{h}_{it} = \frac{1}{n_1} |\sum_e^{n_1} h_e|$
- curl flow per edge  $\bar{r}_{it} = \frac{1}{n_1} |\sum_e^{n_1} r_e|$



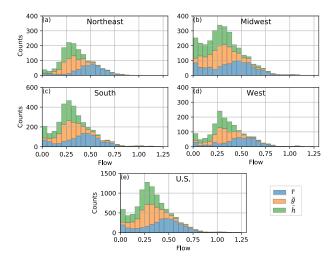


#### Harmonic clustering of care delivery networks



Care delivery networks depicted for Minnesota (a), Washington (b), Minneapolis (c), and Seattle (d) as of 2017.

### Distribution of patient flows by subspace and region



- Harmonic flow per edge is the lowest in all regions, which seems reasonable, as global cyclic flow is likely harder to form.
- Curl flow per edge assumes larger values, which also seems plausible, as the formation of local cycles is probably natural in a care delivery network, where team coordination is important.

#### Regression models

- Up to this point, our results have shown that there is substantial variability in the composition of patient flows across regions.
- We also considered whether this variation is correlated with spending and quality.
- To do so, we estimate a series of linear regression models.
- The unit of observation is the region × year.
- Each model includes three independent variables, which correspond to sums across flow values assigned to each edge, separately for each subspace (adjusted by network size).
- To adjust for temporal trends, each model includes year fixed effects.
- We also estimate models that control for socioeconomic conditions, which have been shown to be predictive of regional health care cost and quality.

|                                  |             | (2)<br>DV: Inpatient<br>spending per<br>beneficiary |              | (4)<br>DV: Readmission<br>rate post-surgical<br>treatment | (5)<br>DV: ER visit<br>rate post-surgical<br>treatment |
|----------------------------------|-------------|-----------------------------------------------------|--------------|-----------------------------------------------------------|--------------------------------------------------------|
| Gradient flow $\bar{g}$ per edge | 60.68       | 34.89                                               | -288.66***   | -0.13                                                     | -0.37                                                  |
|                                  | (163.44)    | (98.35)                                             | (79.10)      | (0.87)                                                    | (0.71)                                                 |
| Harmonic flow $\bar{h}$ per edge | 1147.09***  | 1137.64***                                          | 2828.18***   | 2.59**                                                    | 4.42***                                                |
|                                  | (321.92)    | (201.14)                                            | (160.58)     | (1.31)                                                    | (1.11)                                                 |
| Curl flow $\bar{r}$ per edge     | -1702.83*** | -1416.81***                                         | -2712.92**** | -2.80***                                                  | -3.64***                                               |
|                                  | (216.07)    | (135.18)                                            | (105.29)     | (0.52)                                                    | (0.51)                                                 |
| Constant                         | 10361.97*** | 4726.87* <sup>**</sup>                              | 2557.93***   | 11.54***                                                  | 16.90***                                               |
|                                  | (57.38)     | (37.14)                                             | (29.81)      | (0.16)                                                    | (0.16)                                                 |
| Year fixed effects               | Yes         | Yes                                                 | Yes          | Yes                                                       | Yes                                                    |
| N                                | 12952       | 12952                                               | 12952        | 6034                                                      | 7776                                                   |
| r2                               | 0.08        | 0.05                                                | 0.22         | 0.01                                                      | 0.03                                                   |

Robust standard errors (clustered on region) are shown in parentheses; p<0.1; p<0.05; p<0.01

- Harmonic  $\bar{h}$  and curl  $\bar{r}$  flow are associated with spending, but in opposite directions.
- When harmonic flow is greater, spending is higher; when curl flow is greater, it's lower.
- For perspective, a 1 SD increase in curl flow is associated with a decrease of \$354.75 in annual spending per beneficiary; for an average region, the savings works out to almost \$3 million/year.
- Turning to quality, we find that greater curl r flow is associated with better outcomes, but again, the opposite holds for harmonic flow.
- Our models are robust to controls for socioeconomic factors, and are comparable in effect sizes.
- A 1 SD decrease in the population without a high school degree is associated with a \$465.76 drop in spending/beneficiary, on par with the savings associated with a similar decrease in harmonic flow.

|                                       | (1)          | (2)           | (3)            | (4)                | (5)                |
|---------------------------------------|--------------|---------------|----------------|--------------------|--------------------|
|                                       | DV: Total    | DV: Inpatient | DV: Outpatient | DV: Readmission    | DV: ER visit       |
|                                       | spending per | spending per  | spending per   | rate post-surgical | rate post-surgical |
|                                       | beneficiary  | beneficiary   | beneficiary    | treatment          | treatment          |
| Gradient flow $\bar{g}$ per edge      | -196.34      | -127.45       | -184.56**      | 0.43               | -0.09              |
|                                       | (153.25)     | (93.77)       | (74.60)        | (0.80)             | (0.66)             |
| Harmonic flow $\overline{h}$ per edge | 557.08*      | 871.46***     | 2748.45***     | 0.67               | 2.42**             |
|                                       | (329.08)     | (204.19)      | (158.85)       | (1.27)             | (1.10)             |
| Curl flow $\bar{r}$ per edge          | -862.23***   | -1004.39***   | -2665.44***    | -1.51**            | -1.82***           |
|                                       | (238.69)     | (146.99)      | (111.30)       | (0.60)             | (0.59)             |
| Median household income (\$)          | -0.00        | 0.00          | -0.00          | 0.00               | -0.00***           |
|                                       | (0.00)       | (0.00)        | (0.00)         | (0.00)             | (0.00)             |
| Unemployment rate (%)                 | 7.53         | 2.98          | -50.70***      | 0.08***            | 0.12***            |
|                                       | (9.86)       | (5.89)        | (4.22)         | (0.02)             | (0.02)             |
| No high school degree (%)             | 71.01***     | 44.43***      | -8.68***       | 0.05***            | 0.03***            |
|                                       | (5.19)       | (3.00)        | (1.53)         | (0.01)             | (0.01)             |
| Hispanic population (%)               | -2.54***     | -1.25***      | -0.98***       | -0.00***           | -0.00              |
|                                       | (0.68)       | (0.37)        | (0.21)         | (0.00)             | (0.00)             |
| Black population (%)                  | 4.61***      | 2.37***       | 0.66***        | 0.01***            | -0.00              |
|                                       | (0.97)       | (0.50)        | (0.22)         | (0.00)             | (0.00)             |
| Constant                              | 9227.76***   | 4033.15***    | 3007.61***     | 9.94***            | 15.35***           |
|                                       | (94.76)      | (60.42)       | (43.81)        | (0.21)             | (0.23)             |
| Year fixed effects                    | Yes          | Yes           | Yes            | Yes                | Yes                |
| N                                     | 12950        | 12950         | 12950          | 6034               | 7776               |
| R2                                    | 0.18         | 0.16          | 0.29           | 0.07               | 0.06               |
| Wald tests for flow predictors        |              |               |                |                    |                    |
| F                                     | 11.08        | 19.79         | 208.88         | 3.82               | 4.14               |
| d.f.                                  | 3.00         | 3.00          | 3.00           | 3.00               | 3.00               |
| p-value                               | 0.00         | 0.00          | 0.00           | 0.01               | 0.01               |

Wrapping up

## Wrapping up

- Care fragmentation is a critical problem facing health care delivery in the United States.
- Recently, the growing availability of "big data" has enabled unprecedented insight into care delivery, creating opportunities to better understand and address fragmentation.
- We utilized a novel framework from topological data analysis—the discrete Hodge decomposition—to study flows of patients among physicians in care delivery networks.
- We found substantial variation across broad regions of the country, perhaps corresponding to institutional differences in care delivery.
- Moreover, we observed that greater curl flow is associated with better performance (i.e., lower cost, higher quality), but the opposite holds for harmonic flow.
- Given our context, these patterns seem plausible.
  - The movement of patients around global cycles seems problematic from a care coordination perspective, potentially leading to higher cost, lower quality care.
  - By contrast, the movement of patients around local cycles (as indicated by greater curl flow) seems more conductive to close coordination among providers.
- While preliminary, our findings highlight the significant potential of emerging methods in topological data analysis for the study of health care delivery.