
Sheaf Neural Networks

Jakob Hansen*
Department of Mathematics
The Ohio State University
hansen.612@osu.edu

Thomas Gebhart*
Department of Computer Science

University of Minnesota
gebhart@umn.edu

Abstract

We present a generalization of graph convolutional networks by generalizing
the diffusion operation underlying this class of graph neural networks. These
sheaf neural networks are based on the sheaf Laplacian, a generalization of the
graph Laplacian that encodes additional relational structure parameterized by the
underlying graph. The sheaf Laplacian and associated matrices provide an extended
version of the diffusion operation in graph convolutional networks, providing a
proper generalization for domains where relations between nodes are non-constant,
asymmetric, and varying in dimension. We show that the resulting sheaf neural
networks can outperform graph convolutional networks in domains where relations
between nodes are asymmetric and signed.

1 Introduction

Graph neural networks are a class of generalized neural network architectures that take as input
relational data and learn to classify the input graph or its nodes. Because this relational data lacks
a constant local Euclidean structure, the definition of a local convolution-type operator through
which weight sharing may be achieved is a non-trivial architectural challenge. A natural approach,
inspired by the theory of graph signal processing [8] is to define convolution via the graph Laplacian
or adjacency matrices [1, 3, 7] so that the layer-wise convolution operation acts as neighborhood
averaging followed by propagation of the updated signal, akin to message-passing diffusion with
an additional element-wise non-linearity [11]. The association with convolution comes from taking
the eigenvectors of the Laplacian or adjacency matrix as a Fourier basis for signals on the graph;
convolution is then defined as multiplication of signals in this spectral domain. Actually computing
the spectral coefficients is computationally intensive, so it is common to instead parameterize
convolutional filters by polynomials in the adjacency or Laplacian operators. Indeed, using a
polynomial of degree 1 works well in many situations [7] and provides a computationally efficient
architecture. These convolution operations, broadly construed, define a class of graph neural networks
which we refer to as Graph Convolutional Networks (GCN).

We introduce a generalization of this GCN framework by leveraging a natural extension of the graph
Laplacian called the sheaf Laplacian [5]. Sheaf Laplacians form a class of local linear operators
on a graph that respect the topological and algebraic structure of data associated to nodes. This
generalization allows more complex relationships between nodes to be expressed while maintaining
a consistent notion of local averaging and diffusion. After introducing cellular sheaves, sheaf
Laplacians, and sheaf diffusion operators, we define sheaf neural networks and show that they are
a useful generalization of GCNs in domains where the relational interaction between nodes across
edges is non-constant. We validate this claim by comparing the performance of sheaf neural networks
to GCNs on synthetic, semisupervised classification problems defined over signed graphs and find
that sheaf neural networks significantly outperform the Kipf-Welling GCNs in this domain.

Topological Data Analysis and Beyond Workshop at the 34th Conference on Neural Information Processing
Systems (NeurIPS 2020), Vancouver, Canada.

2 Cellular sheaves

A cellular sheaf is an algebraic-topological structure associated with a graph that attaches spaces
of data to nodes and edges. To be precise, a cellular sheaf F on an undirected graph G is given by
specifying

• a vector space F(v) for each vertex v of G
• a vector space F(e) for each edge e of G, and
• a linear map FvP e : F(v)→ F(e) for each incident vertex-edge pair vP e of G.

The sheaf structure assigns spaces of data to vertices and edges, and specifies consistency constraints
for this data. For an edge e between vertices u and v, we say that a choice of data xv ∈ F(v),
xu ∈ F(u) is consistent over e if FvP exv = FuP exu. The space of data associated with all vertices
of G is denoted C0(G;F) and called the space of 0-cochains valued in F . One thinks of C0(G;F)
as a space of signals on the vertices of G, where the value of a signal at a vertex v lives in the vector
space F(v). Each edge of G imposes a constraint on C0(G;F) by restricting the space associated
with its two incident vertices. The subspace of C0(G;F) satisfying all these constraints is the space
of global sections of F , and is denoted H0(G;F).

There is likewise a space of signals associated with edges, denoted C1(G;F). The space of global
sections H0(G;F) is the kernel of a linear map δ : C0(G;F)→ C1(G;F). This map is called the
coboundary, and, given an arbitrary choice of orientation on the edges of the graph, may be computed
by

(δx)e = FvP exv −FuP exu
for each oriented edge e = u→ v. Clearly, if x ∈ ker δ, then FvP exv = FuP exu for every edge
e = u ∼ v. From the coboundary operator we may construct the sheaf Laplacian LF = δT δ, which
is a positive semidefinite linear operator on C0(G;F) with kernel H0(G;F), and does not depend
on the orientation chosen for the edges of G.

A cellular sheaf operates as an extension of the structure of a graph. Rather than simply recording
connections between nodes, it specifies relationships between data associated with those nodes.
Standard graph-theoretic constructions like Laplacians and diffusion operators implicitly work with
the constant sheaf on a graph: the sheaf R with all stalks R and all restriction maps the identity. This
is a very simple sort of relationship between nodes, and can be greatly generalized in the sheaf setting.
For instance, a sheaf can easily represent a signed graph by changing the sign of one restriction map
of the constant sheaf for each negatively signed edge. Even more general relationships between
nodes can be expressed, especially as stalks increase in dimension, resulting in such operators as
connection Laplacians [9] and matrix-weighted Laplacians [10]. In this paper we will simplify
the constructions by only considering sheaves with constant-dimensional vertex stalks Rk. More
information on cellular sheaves and their Laplacians may be found in [2, 5], including extensions to
higher-dimensional base spaces and additional topological context.

2.1 Sheaf diffusion operators

By an r-step local operator associated to F we mean any linear operator DF on C0(G;F) which
is local with respect to G, in the sense that (DFx)v depends only on xu for nodes u in the r-step
neighborhood of v. We will suggestively call such an operator a sheaf diffusion operator if it has
nice properties with respect to the algebraic structure of F—for instance, if sections of F form an
eigenspace of DF . One such operator is the sheaf Laplacian LF = δT δ. This is a 1-step diffusion
operator whose zero eigenspace consists of sections of F . For an appropriately chosen α, the operator
Hα
F = I − αLF will have 2-norm 1 and have H0(G;F) as the eigenspace corresponding to the

eigenvalue 1. There is also a normalized form of the sheaf Laplacian, L̃F = D−1/2LFD
−1/2, where

D is the block diagonal of LF . It amounts to the Laplacian for a version of F with reparameterized
stalks, and its eigenvalues lie between 0 and 2. This means that no scaling factor is necessary
to construct a stable diffusion operator H̃F = I − L̃F . Diffusion operators depending on larger
neighborhoods may be constructed from powers of these operators. For any r, (LF)r and (Hα

F)r are
r-step sheaf diffusion operators.

From the standpoint of graph signal processing [8], we can consider a sheaf diffusion operator
DF as a shift operator generating convolution-like filters for signals in C0(G;F). We can define

2

the convolution of two signals x, y ∈ C0(G;F) by taking an eigendecomposition DF = SΛS−1

and letting x ∗ y = S(S−1x ◦ S−1y), i.e. by pointwise multiplication in the eigenbasis of DF .
By standard algebraic arguments, for a fixed y ∈ C0(G;F) one can find a polynomial P =
a0I + a1DF + · · · + aND

N
F in DF such that x ∗ y = Px. Thus we can parameterize sheaf

convolutions by polynomials in DF , without having to compute an eigendecomposition. This
parameterization also gives natural bases for restricting the dimension of the space of convolutional
filters. Indeed, in the context of graph convolutional networks, it is common to use a a degree-1
polynomial, since this significantly reduces the number of parameters to learn.

3 Sheaf neural networks

Local graph operators have been used to construct GCNs. These typically rely on applying one or
more graph diffusion operators to the features on each layer and then taking a node-independent
linear combination of features. A sheaf neural network is an extension of this framework.

Suppose that each node has Nfeat k-dimensional features. We write the array of all features for all
nodes as an Nvk ×Nfeat matrix X . A single forward diffusion step applies a sheaf diffusion operator
DF for some sheaf F with k-dimensional stalks to the feature matrix X; that is, it calculates DFX ,
producing a new set of Nfeat k-dimensional features for each node. These features are neighborhood
mixtures of the previous features, computed in a way that is consistent with the algebraic structure
of the sheaf. To construct a neural network layer, we also apply a linear operator to each nodewise
feature vector. When k = 1 this is realized by a right multiplication XA for some matrix A with Nfeat
rows. For k > 1 one must also choose some k × k matrix B and multiply it on the left to each block
row of X . That is, the total operation on X is (I ⊗B)XA, where I ⊗B is the Kronecker product of
B with the Nv ×Nv identity matrix; this amounts to a block diagonal matrix with copies of B on the
diagonal. After these linear transformations, we apply a stalkwise nonlinearity ρ : Rk → Rk.

Combining these, a sheaf neural network layer for a sheaf F on G has hyperparameters N in
feat, N

out
feat,

and DF , a diffusion operator associated with F , together with a stalkwise nonlinearity ρ : Rk → Rk.
Its learnable parameters are the N in

feat ×N out
feat matrix A and the k × k matrix B. The action of this

layer SheafConv(A,B) on a matrix X of nodewise features is

SheafConv(A,B)(X) = ρ (DF (I ⊗B)XA) .

We can use multiple diffusion operators in parallel by taking a concatenation or learnable linear
combination of sheaf neural network layers (without the nonlinearity ρ). This might be useful for
a task where we expect some behavior to be driven purely by connectivity, while other behavior
depends on the relationships between nodes, and can also be used to combine powers of a diffusion
operator to parameterize higher-order sheaf convolutional filters.

4 Semisupervised classification

One problem for which graph-based neural networks are frequently used is the semisupervised
classification problem. In this problem, a network of objects is given, together with N in

feat nodewise
features and Nclass class labels associated with a (typically small) subset of the nodes. The goal
is to impute class labels for the remaining nodes. For our sheaf-based approach to meaningfully
differ from a simpler graph neural network, we need an appropriate sheaf from which to construct a
diffusion operator. Unfortunately, many popular graph classification datasets do not admit obvious
sheaf Laplacian operators that are meaningfully different from the standard graph Laplacian. Due to
the lack of appropriate benchmark datasets, we illustrate the potential for sheaf-based neural networks
using a synthetic family of semisupervised node classification problems over signed graphs. This
allows us to isolate the contribution of a correctly-chosen sheaf diffusion operator in an appropriate
setting.

To generate the synthetic node classification problem, we begin with a set of Nv nodes, and assign
each node an intrinsic feature vector xv ∈ RNintrinsic , sampled from a standard normal distribution.
We choose a classification vector c ∈ RNintrinsic , and for each node v choose a class Cv ∈ {±1} by
Cv = sign(〈c, xv〉). We consider two sets of input features: one linear in the intrinsic features and
one nonlinear. The linear features are a noisy random linear transformation of the intrinsic features:
xin
v = Pxv + εv, where P is a random N in

feat ×Nintrinsic matrix with independent standard Gaussian

3

entries and ε is a noise term obtained by independent samples from a normal distribution with mean
zero and variance σ2

feat. The nonlinear feature regime extends the map producing the linear features
to a random 2-layer fully connected neural network: xin

v = P2ReLU(P1xv + εv), where P1 and P2

are random matrices with independent standard normal entries. We include this nonlinear regime to
provide a stronger inferential challenge. It helps evaluate the potential performance of the SheafNN
architecture for problems where the features and classes are not linearly related.

We generate a noisy graph from the intrinsic features by computing signed weights wuv = 〈xu, xv〉+
εuv and imputing a signed edge with weight wuv when |wuv| > τ . Here εuv is drawn from a mean-
zero Gaussian with variance σ2

w. From this signed graph data, we construct a cellular sheaf F with
all stalks R, where the restriction maps FvP e and FuP e for an edge e = u ∼ v are multiplication
by ±

√
|wuv|. The signs are determined by the parity of the edge: for a positively signed edge FvP e

and FuP e have the same sign, and for a negatively signed edge they have the opposite sign. The
diffusion operator used is then DF = H

1/dmax

F = I − 1
dmax

LF , where dmax is the maximum degree
of the underlying graph.

For both the linear and non-linear noise regimes, we initialize two diffusion-based sheaf neural
networks. The first architecture is three layers with 32 hidden dimensions in each layer (SheafNN-32).
The second architecture is four layers with 16 hidden dimensions in each layer (SheafNN-16). For
comparison, we also initialize two traditional diffusion-based graph convolutional networks according
to [7] with equivalent hidden dimensions and number of layers (GCN-32, GCN-16). All models
have ReLU activations. For each model type, we instantiate five random networks of 5000 nodes
and simulate noisy intrinsic data according to the procedure in the previous paragraph. We set
Nintrinsic = 25, τ = 0.5, N in

feat = 32 and train each model according to this binary classification task,
training on 75% of nodes and determining test performance on the rest. We train each model for 1000
epochs using Adam gradient optimization [6] with learning rate 0.001.

Figure 1 plots the performance of these two models in both the linear and nonlinear feature generation
regimes. Clearly, the SheafNN variants nearly all outperform the GCN variants under a wide range
of feature noise levels (σ2

feat) and weight noise levels (σ2
w). The GCN models appear to saturate in

accuracy slightly above chance. This is expected as their underlying diffusion operation does not
respect the signed nature of the graph. Increasing the weight noise level has the effect of decreasing
performance and slowing training convergence. This is expected as increasing the noise across edge
weights blurs the intrinsic similarity between nodes which has the effect of promoting false relations
between nodes, masking true relations between intrinsically similar nodes, or flipping the intrinsic
relationship altogether. Increasing feature noise uniformly dampens the maximal classification
accuracy across all models as the underlying signal becomes distorted.

5 Discussion

The sheaf Laplacian is as a proper generalization of the graph Laplacian in defining diffusion
operations for domains where relations between nodes are non-constant, asymmetric, and varying in
dimension. This sheaf diffusion operator acts as a drop-in replacement for the graph diffusion operator
and outperforms the standard graph convolutional model in semisupervised node classification over
signed graphs. There are many avenues for future research related to sheaf neural networks.

As mentioned in Section 4, most standard graph datasets do not offer obvious sheaf structures to
leverage, which makes applying sheaf neural networks a more difficult task. We view this fact as a
reflection of the early stage of development of graph classification and processing. There are many
relational processes in nature that are most naturally modeled using asymmetric, heterogeneous rela-
tions. As datasets related to these processes emerge, we expect sheaf neural networks to outperform
related algorithms defined using adjacency-based diffusion operators. Another possible avenue of
application is to learn the sheaf structure from the dataset, as in [4]. One exciting possibility is
the combination of these approaches, where the sheaf structure is learned simultaneously with the
solution to a classification or regression task.

Finally, we note that we have merely scratched the surface of cellular sheaf theory in the above
sections. Numerous other ideas from cellular sheaf theory—sheaf morphisms, approximations, and
pushforward/pullback operations—could offer even greater flexibility in analyzing graph datasets.

4

Figure 1: Sheaf neural networks outperform graph convolutional networks on signed graphs.
Comparison of SheafNN and GCN models on the semisupervised classification task described in
Section 4. Lines plotted are the mean across five random graph trials, with the standard deviation in
error bars. Rows correspond to noise levels for edge weights, while columns correspond to noise
levels for input features.

5

References
[1] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally

connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[2] Justin Curry. Sheaves, Cosheaves, and Applications. PhD thesis, University of Pennsylvania,
2014.

[3] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in neural information processing
systems, pages 3844–3852, 2016.

[4] Jakob Hansen and Robert Ghrist. Learning sheaf Laplacians from smooth signals. In Proceed-
ings of ICASSP, 2019.

[5] Jakob Hansen and Robert Ghrist. Toward a spectral theory of cellular sheaves. Journal of
Applied and Computational Topology, 3(4):315–358, December 2019.

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[7] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[8] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Vandergheynst. Graph signal
processing: Overview, challenges, and applications. Proceedings of the IEEE, 106(5):808–828,
May 2018.

[9] Amit Singer and Hau-Tieng Wu. Vector Diffusion Maps and the Connection Laplacian. Com-
munications in Pure and Applied Mathematics, 65(8), 2012.

[10] S. Emre Tuna. Synchronization under matrix-weighted Laplacian. Automatica, 73:76–81,
November 2016.

[11] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In International Conference on Machine Learning,
pages 6861–6871, 2019.

6

	Introduction
	Cellular sheaves
	Sheaf diffusion operators

	Sheaf neural networks
	Semisupervised classification
	Discussion

